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  In this study, we conduct an empirical analysis of interpretation errors made by Amazon Alexa, the 
speech-recognition engine that powers the Amazon Echo family of devices. We show how common 
misinterpretations made by Alexa can be used to build a new class of attacks, called skill squatting attacks, 
and discuss its security implications.

S mart speakers, such as the Amazon Echo and Google 
Home, have become staple Internet of Things devices 

in the modern home. In fact, analysts estimated that more 
than 75 million smart speakers will have been sold by the 
end of 2018. These devices eschew traditional computing 
inputs, such as a keyboard, mouse, or touch—instead, they 
rely entirely on the human voice and speech-recognition 
systems as their primary control interface.

Unfortunately, the voice services powering these 
devices are not perfect, and they often make mistakes 
when interpreting speech. Errors and misuse of smart 
speakers are already being reported in the wild. For fami-
lies tuning into a news broadcast in San Diego last year, 
coverage of a girl using an Amazon Echo to buy a doll-
house caused their own homes’ smart speakers to buy 
dollhouses. Elsewhere, in Oregon, someone’s Amazon 
Echo surreptitiously recorded his or her conversation and 
then sent it to a random contact as a voice message. These 
incidents join a growing body of anecdotal evidence that 
users are subject to frequent misinterpretation of their 

voice in everyday use. In spite of this, we are unaware of 
any independent, public effort to study these speech rec-
ognition errors in more depth.

Our Experiments: An Overview
In this study,5 we investigate speech recognition mis-
interpretations in Amazon Alexa—quantifying how 
often and why they occur. We chose Alexa because it 
currently holds the largest share of the smart speaker 
market.4 We then leveraged our understanding of mis-
interpretations to build a new class of attacks on speech 
recognition systems, called skill squatting attacks. Alexa 
skills are analogous to any other application, except that 
they run on the Amazon Alexa platform. Skill squatting 
attacks leverage common misinterpretations to sur-
reptitiously route users to malicious Alexa skills with-
out their knowledge. Finally, we demonstrate how skill 
squatting attacks can be used to launch complex phish-
ing attacks on users.

What Is an Alexa Skill?
Amazon Alexa is the voice service system that pow-
ers the Amazon Echo family of devices. To add 
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extensibility to the Alexa platform, Amazon allows the 
development of third-party applications, called skills, 
that leverage Alexa voice services. Many companies 
are actively developing Alexa skills to provide easy 
access to their services through voice. For example, 
users can now request rides through the Lyft skill and 
conduct everyday banking tasks with the American 
Express skill.

Users interact with skills directly through their voice. 
Figure 1 illustrates a typical interaction. The user first 
invokes the skill by saying the skill name or its associated 
invocation phrase ➀. The user’s request is then routed 
through Alexa cloud servers ➁, which determine where 
to forward it based on the user input ➂. The invoked 
skill then replies with the desired output ➃, which is 
finally routed from Alexa back to the user ➄. Up until 
April 2017, Alexa required users to enable a skill to their 
account, in a manner similar to downloading a mobile 
application onto a personal device. However, Alexa now 
offers the ability to interact with third-party skills with-
out first installing them.6

Measuring Misinterpretations
To measure misinterpretations in speech recognition, 
we first need a way to identify when Alexa misinterprets 
a speech sample. To this end, we built a test harness that 
sends audio through to Amazon Alexa and receives a 
transcription of the audio content. The test harness 
takes in audio files as the input, sends them through the 
Alexa cloud, receives transcriptions of the audio files, 
and stores them for further analysis. Queries to Amazon 
Alexa are limited to 400/min to avoid overloading Ama-
zon’s production servers.

To study specific misinterpretations and their 
causes, we rely on an externally collected speech corpus 
called the Nationwide Speech Project (NSP). The NSP is 
an effort led by The Ohio State University, Columbus, 
to provide structured speech data from a range of speak-
ers across the United States.3 The NSP corpus provides 
speech from a total of 60 speakers from six geographical 
dialect regions.

In particular, five male and five female speakers from 
each region provided a set of 188 single-word record-
ings, 76 of which were single-syllable words (e.g., 
“mice,” “dome,” and “bait”) and 112 of which were mul-
tisyllable words (e.g., “alfalfa” and “nectarine”). These 
single-word files provided a total of 11,460 speech 
samples for further analysis and served as our primary 
source of speech data. We queried each audio sample 50 
times to Alexa to ensure that our results were consistent. 
For all queries, Alexa did not return a response on 681 
(0.1%), which we excluded from our analysis. We col-
lected this data set of 572,319 Alexa transcriptions on 
14 January 2018 over a period of 24 h.

Ethical Considerations
Although we used speech samples collected from 
human subjects, we never interacted with subjects dur-
ing the course of this research. We used public data 
sets and ensured that our usage was in line with their 
provider’s terms of service. All requests to Alexa were 
throttled so to not affect the availability of production 
services. For all attacks presented in this article, we 
tested them only in a controlled, developer environ-
ment. Finally, we did not attempt to publish a mali-
cious skill to the public skill store. We disclosed these 
attacks to Amazon and worked with them through the 
standard disclosure process to ensure that these prob-
lems are known.

How Accurate Is Alexa?
We started our analysis by investigating how well 
Alexa transcribed words in our data set. Consis-
tent with anecdotal evidence, Alexa only correct-
 ly interpreted 394,715 (68.9%) of the 572,319 
audio samples.

In investigating where Alexa makes interpreta-
tion errors, we found that accuracy rates varied across 
words. Figure 2 shows the interpretation accuracy by 
individual words in our data set. Only three words 
(2%) were always interpreted correctly. In contrast, 9% 
of words were always interpreted incorrectly, indicating 
that Alexa is poor at correctly interpreting some classes 
of words. Words with the lowest accuracy tended to be 
small, single-syllable words, such as “bean,” “calm,” and 
“coal.” Words with the highest accuracy were mixed. 
Many of the top words contained two or three syl-
lables, such as “forecast” and “robin.” In one counter-
example, the word “good” was interpreted correctly 
99.9% of the time.

Figure 1. The user–skill interaction in Alexa. A typical user interaction with an 
Alexa skill, using an Echo device. In this example, a user interacts with the Lyft 
skill to request a ride.
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Classifying Voice Service Errors
Alexa’s speech recognition service is nondeterminis-
tic—even when playing back the exact same audio file, 
the distribution ways in which a word is misinterpreted 
vary greatly. In investigating the distributions of misin-
terpretations per word, we observed that, for each of the 
188 words, there were one or two interpretations that 
Alexa outputted more frequently than the others. We 
called this interpretation the most common error (MCE) 
for a given word.

For example, take the word “boil,” which was misin-
terpreted by Alexa 100% of the time. The MCE of “boil” 
was the word “boyle,” which accounted for 94.3% (the 

MCE rate) of the errors. In this sense, the rate at which 
the MCE occurred served as a measure of how random 
the distribution of misinterpretations was. Because 
“boyle” accounted for the majority of its interpretation 
errors, we can argue that “boil” has a predictable misin-
terpretation distribution.

To visualize the rate and randomness of interpreta-
tion errors per word, we plotted the error rate for each 
word along with its MCE rate (Figure 3). This graphi-
cal representation provided us with a clearer picture of 
interpretation errors in Alexa. We then split this plot 
into three sections: sections 1 (upper left), 2 (upper 
right), and 3 (bottom half).

The majority (77.7%) of words in our data set 
fell into section 3. These words were interpreted cor-
rectly by Alexa most of the time. There were 9.6% of 
the words in our data set that appeared in section 2, 
meaning they were misinterpreted often but did not 
feature a prevalent MCE. These were likely to be words 
that Alexa was poor at understanding altogether. As an 
example, the word “unadvised,” which has 147 unique 
misinterpretations, appeared in this section. The final 
class of words, in section 1, were those that were misin-
terpreted more than 50% of the time and had an MCE 
that appeared in more than 50% of the errors. These 
were words that Alexa misunderstood both frequently 
and in a consistent manner. There were 24 (12.8%) 
such words in our data set.

Explaining Voice Service Errors
We now have a classification for interpretation errors 
from our data set. Moreover, we identified 24 words 
for which Alexa consistently outputs one wrong inter-
pretation. We next investigate why these systematic 
errors occur.

Homophones
Unsurprisingly, eight (33.3%) of these errors, includ-
ing “sail” to “sale,” “calm” to “com,” and “sell” to “cell” 
were attributable to the fact that these words are homo-
phones, meaning that they have the same pronunciation 
but different spellings. Of these, five are cases where 
Alexa returns a proper noun (of a person, state, band, or 
company) that is a homophone with the spoken word, 
for example, “main” to “Maine,” “boil” to “Boyle,” and 
“outshine” to “Outshyne.”

Compound Words
Two (8.3%) other systematic errors occurred due to 
compound words. Alexa appeared to break these into 
their constituent words, rather than return the continu-
ous compound word. For example, “superhighway” was 
split into “super highway” and “outdoors” was split into 
“out doors.”

Figure 2. The accuracy of Alexa interpretations by word is 
shown as a cumulative distribution function (CDF); 9% of 
the words in our data set were never interpreted correctly, 
and 2% were always interpreted correctly. This shows 
substantial variance in misinterpretation rate among words.
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Phonetic Confusion
Ten (41.7%) of the systematic errors could be explained 
by examining the underlying phonetic structures of the 
input words and their errors: in each case, the MCE dif-
fered from the spoken word by just a single phoneme. 
For example, the MCE for the word “wet” was the 
word “what.” The phonetic spelling of “wet” is W EH 
T, whereas the phonetic spelling of “what” is W AH T. 
The errors show that Alexa often misunderstands cer-
tain specific phonemes within words while correctly 
interpreting the rest of them. A full list of the phonetic 
structures for these cases is shown in Table 1.

Other Errors
We could not easily explain three (12.5%) of the errors: 
“mill” to “no,” “full” to “four,” and “earthy” to “Fi.” Even 
in listening to each speech sample individually, we 
found no auditory reason why this interpretation error 
occurred. One surprising error (“preferably” to “pre-
ferrably”) occurred because Alexa returned a common 
misspelling of the intended word. This may be caused 
by a bug in the Alexa system itself.

Squatting on Alexa Skill Names
After finding that, for some words, Alexa made fre-
quently occurring predictable errors, we leveraged these 
errors to build a new class of attacks, called skill squat-
ting, which exploited predictable errors to surrepti-
tiously route users to a malicious Alexa skill.

The core idea is simple—given a systematic error 
from one word to another, an adversary constructs a 
malicious skill that has a high likelihood of confusion 
with a target skill on the Alexa skills store. When a user 
tries to access a desired skill using his or her voice, he or 
she is instead routed to the malicious skill because of a 
systematic error in the interpretation of the input.

As an example, consider the real Alexa skill “cat 
facts.” The skill is very simple to use—a user invokes the 
skill by saying “Alexa, tell me some cat facts” to his or 
her Echo device, and the skill returns some facts about 
cats. Unfortunately, in this example, Alexa commonly 
misinterprets “facts” as the word “fax.” If attackers know 
this, they can publish a new skill onto the Alexa store 
called “cat fax,” instead of “cat facts.” Now, when the user 
says “Alexa, tell me some cat facts,” he or she is instead 
routed to the malicious “cat fax” skill instead of his or 
her desired skill.

It may not surprise you that such an attack vector 
exists. After all, there are plenty of other attacks that 
are similar in flavor—for example, domain name typo-
squatting. In typosquatting, an attacker predicts a com-
mon typo in a domain name and abuses it to hijack a 
request.8–11 However, typosquatting relies on the user 
to make a mistake while typing a domain; in contrast, 

skill squatting is intrinsic to the speech-recognition 
service itself.

Targeting Existing Alexa Skills
We next investigate how an adversary can craft mali-
ciously named skills targeting existing skills in the 
Alexa skills store. To start, we collected all of the skills 
available on the Alexa store as of 27 December 2017, 
amounting to 23,238 unique skill names. Then, we split 
each skill name into its individual words. If a word in 
a skill existed in our spoken data set of 188 words, we 
checked whether that word was squattable. If so, we 
exchanged that word with its MCE to create a new skill 
name. As an example, the word “calm” was systemati-
cally misinterpreted as “com” in our data set. Therefore, 
a skill with the word “calm” can be squatted by using 
the word “com” in its place (e.g., “quick com” squats the 
existing Alexa skill “quick calm”).

Using the 24 squattable words that we identified 
previously, we found that we could target 31 skill 
names that currently exist on the Alexa Store. Only 
11 (45.8%) of the squattable words appear in Alexa 
skill names. Table 2 shows one example of a squat-
table skill for each of these 11 words. We note that 
the number of squattable skills we identify is primar-
ily limited by the size of our data set and that it is not 
a ceiling for the pervasiveness of this vulnerability in 
the Amazon market.

Predicting Squattable Words
An adversary who attempts this attack using the tech-
niques described thus far would be severely restricted 

Table 1. Phonetic structure of systematic errors. 

Word MCE 
Word 
phonemes MCE phonemes 

rip rap R IH P R AE P

lung lang L AH NG L AE NG 

wet what W EH T W AH T 

dime time D AY M T AY M

bean been B IY N B IH N 

dull doll D AH L D AA L 

coal call K OW L K AO L 

luck lock L AH K L AA K 

loud louder L AW D L AW D ER 

sweeten Sweden S W IY T AH N S W IY D AH N

NOTE: We show the underlying phonetic structure of the 10 systematic errors that 
seem to appear due to Alexa confusing certain phonemes with others. In each case, the 
resultant MCE is at an edit distance of just one phoneme from the intended word.
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by the size and diversity of his or her speech corpus. 
Without many recordings of a target word from a vari-
ety of speakers, he or she would be unable to reliably 
identify systematic misinterpretations of that word. 
Considering that many popular skill names make use 
of novel words (e.g., WeMo) or words that appear less 
frequently in discourse (e.g., Uber), acquiring such a 
speech corpus may prove prohibitively costly and, in 
some cases, infeasible.

We previously observed that, in some cases, pho-
neme errors could explain why Alexa made a systematic 
misinterpretation. Motivated by this observation, we 
now consider how an attacker can amplify the value of 

his or her speech corpus by reason-
ing about Alexa misinterpretations at 
the phonetic level. To better under-
stand this, consider the misinter-
pretation of the word “luck.” “Luck”  
(L AH K) is frequently misinterpreted 
as “lock” (L AA K), suggesting that 
Alexa experiences confusion spe-
cifically between the phonemes AH 
and AA. As such, an attacker might 
predict confusion in other words 
with the AH phoneme (e.g., “duck” 
to “dock,” “cluck” to “clock”) without 
having directly observed those words 
in their speech corpus.

Given this intuition, we used our 
seed set of word misinterpretations 
to build a phoneme model of mis-
interpretations. The output of this 
model was a mapping from input 
phoneme to potential output pho-

nemes. We then applied this model to identify already 
existing instances of confused skills in the Alexa skills 
store. In total, we found 381 unique skill pairs that 
exhibited phoneme confusion. The largest single con-
tributor was the word “fact,” which was commonly 
misinterpreted as “facts” and “fax.” Given the large num-
ber of fact-related skills available on the skill store, it is 
unsurprising that many of these exist in the wild.

To determine whether these similarities were due 
to chance, we investigated each pair individually on the 
skill store. We found eight examples of squatted skills 
that we marked as worth investigating more closely 
(Table 3). We cannot speak to the intention of the skill 
creators. However, we found it interesting that such 
examples currently exist on the store. For example, 
“cat facts” has a corresponding squatted skill, “cat fax,” 
which seemingly performs the same function, though 
published by a different developer. In another example, 
“Phish Geek,”2 which purports to give facts about the 
American rock band Phish, is squatted by “Fish Geek,”1 
which gives facts about fish. Anecdotally, one user of 
“Phish Geek” appeared to have experienced squatting, 
writing in a review: “I would love it if this actually gave 
facts about the band. But instead, it tells you things like 
‘Some fish have fangs!’ ”

Ultimately, we have no clear evidence that any of 
these skills of interest were squatted intentionally. How-
ever, this does provide interesting insight into some 
examples of what an attacker may do and further vali-
dates our assertion that our phoneme-based approach 
can prove useful in finding such examples in use today. 
Beyond this, we found that of the 23,238 unique skills in 
the Alexa skill store, 16,836 (72.5%) could potentially 

Table 3. Squatted skills in the Alexa skills store. 

Skill A Skill B 

Cat fats Cat facts

Pie number facts Pi number facts

Cat facts Cat fax

Magic hate ball Magic eight ball

Flite facts Flight facts 

Smart homy Smart home 

Phish geek Fish geek 

Snek helper Snake helper 

NOTE: We show examples of squatted skills in the Alexa skills 
store that drew our attention during manual analysis. Notably, a 
customer review of the phish geek skill noted they were unable to 
use the application due to common confusion with the fish geek skill.

Table 2. Squattable skills in the Alexa skills store. 

Skill Squatted skill 

Boil an egg Boyle an egg 

Main site workout Maine site workout

Quick calm Quick com

Bean stock Been stock 

Test your luck Test your lock

Comic Con dates Comic khan dates 

Mill Valley guide No valley guide 

Full moon Four moon 

Way loud Way louder 

Upstate outdoors Upstate out 

Rip Ride Rockit Rap ride rocket 

NOTE: We show 11 examples of squattable skills publicly available in the Alexa skill store 
as well as squatted skill names an attacker could use to squat them.
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be squatted using our phoneme model. Unfortunately, 
without additional speech samples, there is no way for 
us to validate the potential attacks.

Case Study: Skill-Based Phishing Attack
In some cases, the skill squatting attack can be used to cre-
ate complex phishing attacks. In this section, we show an 
example phishing attack on the American Express skill. 
The American Express skill allows Amex users to use 
their Echo device to perform standard banking tasks, like 
checking account balances and initiating money transfers.

Recall that the typical workflow for interacting with 
an Alexa skill is for a user to send his or her Echo device 
some command, for example, “Alexa, ask Amex to make 
a bank transfer of 30 dollars.” However, if a user is unau-
thenticated with the Amex service at the time of the 
request, the Echo device will prompt the user to sign in 
to his or her account on their mobile device. An exam-
ple prompt is shown in Figure 4(a).

In our testing, we observed that Alexa makes specific 
systematic errors with phonemes that sound like let-
ters—for example, in our data set, the word “accelerate” 
was often interpreted by Alexa as “x.celerate.” Motivated 
by this observation, we uncovered that if a skill existed 
on the skill store called “Am X,” Alexa would prefer it 
over the valid “Amex” application in every case.

As a result, an attacker could publish a skill called 
“Am X” and have it replicate the flow of authentication 
for the real American Express skill, displaying a prompt 
to the user that looks nearly identical to that of the cor-
rect Amex login page [Figure 4(b)]. If a user were to 
enter his or her credentials into this login page, he or 
she would be unwittingly giving away his or her login 
credentials to an adversary. As such, skill squatting 
attacks have a more dangerous potential beyond simply 
confusing “phish” and “fish”—they could provide a new 
avenue by which adversaries can phish users.

Limitations
A core limitation of our analysis is the scope and scale 
of the data set we used in our analysis. The NSP data 
set only provided 188 words from 60 speakers, which 
was inadequate for measuring the full scale of system-
atic misinterpretations of Amazon Alexa. Although our 
phoneme model extends our observed misinterpreta-
tion results to new words, it was also confined by just the 
errors that appeared from querying the NSP data set.

Another limitation of our work is that we relied on the 
key assumption that triggering skills in a development 
environment worked similarly to triggering publicly 
available skills. However, we did not attempt to publish 
skills or attack existing skills on the Alexa skills store due 
to ethical concerns. A comprehensive validation of our 
attack would require that we work with Amazon to test 

the skill squatting technique safely in their public produc-
tion environment.

Countermeasures
The skill squatting attack relies on an attacker registering 
squatted skills. All skills must go through a certification 
process before they are published. To prevent skill squat-
ting, Amazon could add to the certification process both 
a word-based and a phoneme-based analysis of a new 
skill’s invocation name to determine whether it may be 
confused with skills that are already registered. This idea 
is further explored in an article by Zhang et al. appearing 
at the IEEE Security and Privacy Symposium in 2019.12

As a similar example, domain name registrars com-
monly restrict the registration of homographs—domains 
that look very similar visually—of well-known domains.7 
These checks seem not to be currently in place on Alexa 
because we found 381 pairs of skills with different 
names, but likely to be squatted on the store.

Short of pronunciation-based attacks, there already 
exist public skills with identical invocation names on the 
Alexa skills store. For example, there are currently more 
than 30 unique skills called “cat facts,” and the way in 
which Amazon routes requests in these cases is unclear. 
Although this is a benign example, it demonstrates that 
some best practices from other third-party app store 
environments have not made their way to Alexa yet.

O ur study suggests that systematic errors in 
Amazon Alexa give rise to a new class of attack 

with potentially dangerous security implications. 

Figure 4. The American Express login prompts. After 
launching a skill squatting attack, an adversary can 
launch a phishing attack by constructing a card that 
looks nearly identical to the valid login page. (a) 
The American Express standard prompt and (b) the 
American Express phishing prompt. 

(a) (b)
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We showed how an attacker can leverage systematic 
errors to surreptitiously trigger malicious applications 
for users in the Alexa ecosystem. Further, we demon-
strated how this attack could be extended to launch 
complex phishing attacks. We hope our results inform 
the security community about the implications of 
interpretation errors in speech-recognition systems 
and ultimately provide the groundwork for future work 
in this area. 
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